Example_DET_OBLIQUE_THETA.m#

 1% -------------------------------------------------------------------------
 2% EXAMPLE: DET_OBLIQUE_THETA
 3%
 4% Compute pre-shock and post-shock state for a oblique detonation
 5% considering Chapman-Jouguet (CJ) theory for a stoichiometric CH4-air
 6% mixture at standard conditions, a set of 24 species considered, an 
 7% overdrive of 4 and a set of deflection angles [15:5:50] [deg].
 8%   
 9% Soot formation == {'CO2','CO','H2O','H2','O2','N2','Ar','Cbgrb',...
10%                    'C2','C2H4','CH','CH3','CH4','CN','H',...
11%                    'HCN','HCO','N','NH','NH2','NH3','NO','O','OH'}
12%   
13% See wiki or list_species() for more predefined sets of species
14%
15% @author: Alberto Cuadra Lara
16%          PhD Candidate - Group Fluid Mechanics
17%          Universidad Carlos III de Madrid
18%                 
19% Last update Nov 12 2022
20% -------------------------------------------------------------------------
21
22%% INITIALIZE
23self = App('Soot Formation');
24%% INITIAL CONDITIONS
25self = set_prop(self, 'TR', 300, 'pR', 1 * 1.01325, 'phi', 1);
26self.PD.S_Fuel     = {'CH4'};
27self.PD.S_Oxidizer = {'N2', 'O2', 'Ar', 'CO2'};
28self.PD.ratio_oxidizers_O2 = [78.084, 20.9476, 0.9365, 0.0319] ./ 20.9476;
29%% ADDITIONAL INPUTS (DEPENDS OF THE PROBLEM SELECTED)
30drive_factor = 4;
31self = set_prop(self, 'drive_factor', drive_factor, 'theta', 15:5:50);
32%% SOLVE PROBLEM
33self = solve_problem(self, 'DET_OBLIQUE');
34%% DISPLAY RESULTS (PLOTS)
35post_results(self);