Example_DET_OBLIQUE_THETA.m#

 1% -------------------------------------------------------------------------
 2% EXAMPLE: DET_OBLIQUE_THETA
 3%
 4% Compute pre-shock and post-shock state for a oblique overdriven detonation
 5% considering Chapman-Jouguet (CJ) theory for a stoichiometric CH4-air
 6% mixture at standard conditions, a set of 24 species considered, an 
 7% overdrive of 4 and a set of deflection angles [10:5:40] [deg].
 8%   
 9% Soot formation == {'CO2', 'CO', 'H2O', 'H2', 'O2', 'N2', 'He', 'Ar',...
10%                    'HCN','H','OH','O','CN','NH3','CH4','C2H4','CH3',...
11%                    'NO','HCO','NH2','NH','N','CH','Cbgrb'}
12%   
13% See wiki or ListSpecies() for more predefined sets of species
14%
15% @author: Alberto Cuadra Lara
16%          PhD Candidate - Group Fluid Mechanics
17%          Universidad Carlos III de Madrid
18%                 
19% Last update March 25 2022
20% -------------------------------------------------------------------------
21
22%% INITIALIZE
23self = App('Soot Formation');
24%% INITIAL CONDITIONS
25self = set_prop(self, 'TR', 300, 'pR', 1 * 1.01325, 'phi', 1);
26self.PD.S_Fuel     = {'CH4'};
27self.PD.S_Oxidizer = {'O2'};
28self.PD.S_Inert    = {'N2', 'Ar', 'CO2'};
29self.PD.proportion_inerts_O2 = [78.084, 0.9365, 0.0319] ./ 20.9476;
30%% ADDITIONAL INPUTS (DEPENDS OF THE PROBLEM SELECTED)
31overdriven = 4;
32self = set_prop(self, 'overdriven', overdriven, 'theta', 15);
33%% SOLVE PROBLEM
34self = SolveProblem(self, 'DET_OBLIQUE');
35%% DISPLAY RESULTS (PLOTS)
36postResults(self);