1% -------------------------------------------------------------------------
2% EXAMPLE: SHOCK_OBLIQUE_R
3%
4% Compute pre-shock and post-shock state (incident and reflected) for a
5% oblique incident shock wave at standard conditions, a set of 20 species
6% considered, a initial shock front velocities u1 = a1 * 10 [m/s], and a
7% deflection angle theta = 20 [deg]
8%
9% Air_ions == {'O2','N2','O','O3','N','NO','NO2','NO3','N2O','N2O3',...
10% 'N2O4','N3','eminus','Nminus','Nplus','NOplus','NO2minus',...
11% 'NO3minus','N2plus','N2minus','N2Oplus','Oplus','Ominus',...
12% 'O2plus', 'O2minus,'CO2','CO','COplus','C','Cplus',...
13% 'Cminus','CN','CNplus','CNminus','CNN','NCO','NCN','Ar',...
14% 'Arplus'}
15%
16% See wiki or list_species() for more predefined sets of species
17%
18% @author: Alberto Cuadra Lara
19% PhD Candidate - Group Fluid Mechanics
20% Universidad Carlos III de Madrid
21%
22% Last update July 22 2022
23% -------------------------------------------------------------------------
24
25%% INITIALIZE
26self = App('Air_ions');
27% self = App({'O2', 'N2', 'Ar', 'CO2'}); % Frozen
28% self = App({'O2'}); % Frozen
29%% INITIAL CONDITIONS
30self = set_prop(self, 'TR', 300, 'pR', 1 * 1.01325);
31self.PD.S_Oxidizer = {'N2', 'O2', 'Ar', 'CO2'};
32self.PD.N_Oxidizer = [78.084, 20.9476, 0.9365, 0.0319] ./ 20.9476;
33%% ADDITIONAL INPUTS (DEPENDS OF THE PROBLEM SELECTED)
34overdriven = 10;
35self = set_prop(self, 'u1', 3.472107491008314e+02 * overdriven, 'theta', 20);
36%% SOLVE PROBLEM
37self = solve_problem(self, 'SHOCK_OBLIQUE_R');
38%% DISPLAY RESULTS (PLOTS)
39post_results(self);