References#

[1]

A. Cuadra, C. Huete, and M. Vera. Combustion Toolbox: A MATLAB-GUI based open-source tool for solving combustion problems. 2024. Version 1.0.5. doi:10.5281/zenodo.5554911.

[2]

S. Gordon and B. J. McBride. Computer program for calculation of complex chemical equilibrium compositions and applications. Part 1: Analysis. No. NAS 1.61:1311, 1994.

[3]

B. J. McBride. NASA Glenn coefficients for calculating thermodynamic properties of individual species. National Aeronautics and Space Administration, Glenn Research Center, 2002.

[4]

A. Burcat and B. Ruscic. Third millenium ideal gas and condensed phase thermochemical database for combustion (with update from active thermochemical tables). Technical Report, Argonne National Lab. (ANL), Argonne, IL (United States), 2005. doi:10.2172/925269.

[5]

B. Ruscic, R. E. Pinzon, G. Von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoy, and A. F. Wagner. Active Thermochemical Tables: thermochemistry for the 21st century. In Journal of Physics: Conference Series, volume 16, 078. IOP Publishing, 2005. doi:10.1088/1742-6596/16/1/078.

[6]

J. Sánchez-Monreal, A. Cuadra, C. Huete, and M. Vera. SimEx: A Tool for the Rapid Evaluation of the Effects of Explosions. Applied Sciences, 2022. doi:10.3390/app12189101.

[7]

A. Cuadra, C. Huete, and M. Vera. Effect of equivalence ratio fluctuations on planar detonation discontinuities. Journal of Fluid Mechanics, 903:A30 1–39, 2020. doi:10.1017/jfm.2020.651.

[8]

C. Huete, A. Cuadra, M. Vera, and J. Urzay. Thermochemical effects on hypersonic shock waves interacting with weak turbulence. Physics of Fluids, 33(8):086111, 2021. doi:10.1063/5.0059948.

[9]

A. Cuadra, M. Vera, M. Di Renzo, and César Huete. Linear theory of hypersonic shocks interacting with turbulence in air. In AIAA SciTech 2023 Forum, AIAA paper 2023–0075. 2023. doi:10.2514/6.2023-0075.

[10]

D. G. Goodwin, R. L. Speth, H. K. Moffat, and B. W. Weber. Cantera: an object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. https://www.cantera.org, 2021. Version 2.5.1. doi:10.5281/zenodo.4527812.

[11]

S. Browne, J. Ziegler, N. Bitter, B. Schmidt, J. Lawson, and J. E. Shepherd. SDToolbox - Numerical Tools for Shock and Detonation Wave Modeling. GALCIT Technical Report FM2018.001 Revised January 2021, California Institute of Technology, Pasadena, CA, 2008. , https://shepherd.caltech.edu/EDL/PublicResources/sdt.

[12]

S. Browne, J. Ziegler, and J. E. Shepherd. Numerical solution methods for shock and detonation jump conditions. GALCIT report FM2006, 6:1–90, 2008.

[13]

F. N. Fritsch and R. E. Carlson. Monotone piecewise cubic interpolation. SIAM Journal on Numerical Analysis, 17(2):238–246, 1980. doi:10.1137/0717021.

[14]

J. Blecic, J. Harrington, and M. O. Bowman. TEA: A code calculating thermochemical equilibrium abundances. The Astrophysical Journal Supplement Series, 225(1):4 1–14, 2016. doi:10.3847/0067-0049/225/1/4.

[15]

A. Cuadra. Development of a wide-spectrum thermochemical code with application to planar reacting and non-reacting shocks. PhD thesis, Universidad Carlos III de Madrid, Madrid, Spain, May 2023. Available at http://hdl.handle.net/10016/38179.

[16]

J. W. Stock, D. Kitzmann, A. B. C. Patzer, and E. Sedlmayr. FastChem: A computer program for efficient complex chemical equilibrium calculations in the neutral/ionized gas phase with applications to stellar and planetary atmospheres. Monthly Notices of the Royal Astronomical Society, 479(1):865–874, 2018. doi:10.1093/mnras/sty1531.

[17]

B. J. McBride. Computer program for Calculation of Complex Chemical Equilibrium Compositions and Applications. Volume 2. NASA Lewis Research Center, 1996.